Corrigenda: ‘‘Solutions of the Diophantine equations $x^2 + y^2 = l^2$, $y^2 + z^2 = m^2$, $z^2 + x^2 = n^2$” (Math. Comp. {\bf 20} (1966), 144–147) by M. Lal and W. J. Blundon

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE DIOPHANTINE EQUATION x2+2k =yn, II

New results regarding the full solution of the diophantine equationx2+2k=yn in positive integers are obtained. These support a previous conjecture, without providing a complete proof.

متن کامل

Elementy geometrii analitycznej

Znajdziemy teraz wzór na odleg lość punktu (x0, y0) od prostej, wspó lrze↪dne punktów której spe lniaja↪ równanie ax+by+c = 0 . Oczywíscie po to, by to równanie przedstawia lo prosta↪ trzeba za lożyć, że wektor [a, b] nie jest wektorem zerowym, czyli że [a, b] 6= [0, 0] . Odleg lość punktów (x1, y1) i (x2, y2) to √ (x1 − x2) + (y1 − y2) . Wynika to natychmiast z twierdzenia Pitagorasa zastosowa...

متن کامل

The Diophantine Equation 8x + py = z2

Let p be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if p ≡ ± 3(mod  8), then the equation 8 (x) + p (y) = z (2) has no positive integer solutions (x, y, z); (ii) if p ≡ 7(mod  8), then the equation has only the solutions (p, x, y, z) = (2 (q) - 1, (1/3)(q + 2), 2, 2 (q) + 1), where q is an odd prime with q ≡ 1(mod  3); (iii) if p ≡ 1(mod  8)...

متن کامل

Integer Solutions of Some Diophantine Equations via Fibonacci and Lucas Numbers

We study the problem of finding all integer solutions of the Diophantine equations x2 − 5Fnxy − 5 (−1) y2 = ±Ln, x2 − Lnxy + (−1) y2 = ±5F 2 n , and x2 − Lnxy + (−1) y2 = ±F 2 n . Using these equations, we also explore all integer solutions of some other Diophantine equations.

متن کامل

Ramanujan’s Identities and Representation of Integers by Certain Binary and Quaternary Quadratic Forms

We revisit old conjectures of Fermat and Euler regarding representation of integers by binary quadratic form x2 + 5y2. Making use of Ramanujan’s 1ψ1 summation formula we establish a new Lambert series identity for ∑∞ n,m=−∞ q n2+5m2 . Conjectures of Fermat and Euler are shown to follow easily from this new formula. But we don’t stop there. Employing various formulas found in Ramanujan’s noteboo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1969

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1969-0400637-0