Corrigenda: ‘‘Solutions of the Diophantine equations $x^2 + y^2 = l^2$, $y^2 + z^2 = m^2$, $z^2 + x^2 = n^2$” (Math. Comp. {\bf 20} (1966), 144–147) by M. Lal and W. J. Blundon
نویسندگان
چکیده
منابع مشابه
THE DIOPHANTINE EQUATION x2+2k =yn, II
New results regarding the full solution of the diophantine equationx2+2k=yn in positive integers are obtained. These support a previous conjecture, without providing a complete proof.
متن کاملElementy geometrii analitycznej
Znajdziemy teraz wzór na odleg lość punktu (x0, y0) od prostej, wspó lrze↪dne punktów której spe lniaja↪ równanie ax+by+c = 0 . Oczywíscie po to, by to równanie przedstawia lo prosta↪ trzeba za lożyć, że wektor [a, b] nie jest wektorem zerowym, czyli że [a, b] 6= [0, 0] . Odleg lość punktów (x1, y1) i (x2, y2) to √ (x1 − x2) + (y1 − y2) . Wynika to natychmiast z twierdzenia Pitagorasa zastosowa...
متن کاملThe Diophantine Equation 8x + py = z2
Let p be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if p ≡ ± 3(mod 8), then the equation 8 (x) + p (y) = z (2) has no positive integer solutions (x, y, z); (ii) if p ≡ 7(mod 8), then the equation has only the solutions (p, x, y, z) = (2 (q) - 1, (1/3)(q + 2), 2, 2 (q) + 1), where q is an odd prime with q ≡ 1(mod 3); (iii) if p ≡ 1(mod 8)...
متن کاملInteger Solutions of Some Diophantine Equations via Fibonacci and Lucas Numbers
We study the problem of finding all integer solutions of the Diophantine equations x2 − 5Fnxy − 5 (−1) y2 = ±Ln, x2 − Lnxy + (−1) y2 = ±5F 2 n , and x2 − Lnxy + (−1) y2 = ±F 2 n . Using these equations, we also explore all integer solutions of some other Diophantine equations.
متن کاملRamanujan’s Identities and Representation of Integers by Certain Binary and Quaternary Quadratic Forms
We revisit old conjectures of Fermat and Euler regarding representation of integers by binary quadratic form x2 + 5y2. Making use of Ramanujan’s 1ψ1 summation formula we establish a new Lambert series identity for ∑∞ n,m=−∞ q n2+5m2 . Conjectures of Fermat and Euler are shown to follow easily from this new formula. But we don’t stop there. Employing various formulas found in Ramanujan’s noteboo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1969
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1969-0400637-0